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Alternative approaches for toxicity assessment

Recent efforts shifted towards interpretable
models which can explain the mechanistic
background, helping in:

- Understanding mechanisms of toxicity
- Rationalizing decision making in toxicity
assessment
- Prioritizing in vitro models for the relevant
biological activities
Variable, and slow, regulatory acceptance of
black box QSAR models

Integrated Approaches for Testing and Assessment
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QSAR models to predict chemical properties
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Data is used to build predictive models and extract patterns
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Machine learning models are used to predict
in vivo and clinical adverse eftects

Chemical |
Researchin e 1 o Prediction of Chemical Ames Mutagenici
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Congying Xu,T Feixiong ChengJr Lei Chen,* Zheng Du,T Weihua Li,Jr Guixia Liu,*'m Philip W. Lee,Jr

and Yun Tang*'
Predicting Hepatotoxicity Using ToxCast in Vitro Bioactivity and ’

Chemical Structure

Jie Liu,)r’i’§ Kamel M;msouri,?’§ Richard S. _]udson,Jr Matthew T. Martin,? Huixiao Hong,|| Minjun Chen,”
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Deep Learning-based Prediction of Drug-induced Cardiotoxicity

Chuipu Cai'2, Pengfei Guo', Yadi Zhou3, Jingwei Zhou', Qi Wang', Fengxue Zhang?,
Jiansong Fang'!”", and Feixiong Cheng*%:6~

Non-mutagens

Gene Expression Data Based Deep Learning Model for Accurate
Prediction of Drug-Induced Liver Injury in Advance PAPER View Article Online

View Journal | View Issue
Chunlai Feng,*'# Hengwei Chen,# Xiangin Yuan, Menggiu Sun, Kexin Chu, Hangin Liu,
.o -* =g. - - -
and Mengjie Rui @ggmgy In silico prediction of hERG potassium channel
blockage by chemical category approachest

Cite this: Toxicol. Res., 2016, 5, 570

Chen Zhang, Yuan Zhou, Shikai Gu, Zengrui Wu, Wenjie Wu, Changming Liu,
Kaidong Wang, Guixia Liu, Weihua Li, Philip W. Lee and Yun Tang*



Adverse outcome pathway framework is used for
mechanistic interpretation of adverse effects

Molecular Cellular Tissue Organ Individual
[MIE ]—b{ KE ]—[ KE J—*{ KE J—b[ AO ]

MIE: Molecular Initiating Event

KE: Key Event

AO: Adverse Outcome

By mining the statistical associations between changes at molecular and cellular level against
toxicity in animal or human, we can generate hypothesis about mechanisms of toxicity



How data-based methods can be used to derive
hypotheses about toxicity modes of action

Interpretable Features

Chemical Properties

-Physicochemical
properties

-Structural
alerts/Toxicophores

Biological activity
-Molecular
-Cellular

-Tissue/Organ

Interpretable Algorithms

-Correlation/association analysis

- Similarity over chemical or biological
space (analogues)

- multivariate models (regression and
decision trees)



Integrating clinical reports and in vitro data can be
mined to derive mechanistic hypotheses

ToxCast

Chemical . }
Researchin

- & Cite This: Chem. Res. Toxicol. 2018, 31, 1119-1127 )
Toxlcoloqv Compound Screening Results
I
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Cardiotoxicity -:
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Compounds rarely have one
single biological action and
are rather characterized by
polypharmacology profiles
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AOP networks are useful to analyze interactions, but

limited by incomplete information

A) Emerging AOPs and Interactions

EMERGENT
AOP

EMERGENT
AOP

B) Types of Interactions

Apical Convergence Interdependent
Convergence Divergence KE Modulation

220000
PTYT

C) Changesin AO Severity and associated

AOP network motifs[]
Additivity
[Convergent motifs]
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/o [ roe2 Y\ [ roe2
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A.Topology examples B Analytics examples

Convergent @ :
g
KE

Degree of KEs

: low (1)
Bow tie Path occurrence of KEs

The current challenge to fully utilize the AOP network framework is the
incomplete information about KE/MIE linked by KER towards adverse

outcomes

Daniel Villeneuve et al Environ. (2018) Toxicol. Chem 10



Toxicity is explained by combinations of features
represented as chemical and bioactivity properties

g Assay; + Chemical Feature™ A

Assay, + Chemical Feature ,, m=) Toxicity

- y

“*Each combination constitutes of one or more assay endpoint and can
contain one or more chemical properties

[, m e F, where F : physicochemical properties or structural alerts



Compounds

Data-based approach: Rules

Feature Space (chemical Xeature/activity in targets/assays)

Toxicity label

RULE : If (E) is green AND (C) is green = then (L) is red

Entropy is a purity measure to construct
trees/rules

Entropy =-p log,p — q log,q

o o o ! y o o 3 o
~ v » - > - - © -
T

4 os s
p

Entropy =-0.5 log,0.5-0.5l0g,0.5=1

Intersection (AND operator)



Conventional rules do not respect direction of
association

Assumption  Positive Activity in Assay (key event) =) Toxicity

Mitochondrial impairment mmms) Toxicity Biologically meaningful
Example
Not cytotoxic mm)  Toxicity Biologically irrelevant
Molecular Cellular Tissue Organ Individual

(o)== )= — (=

Key Event Relationships (KERs) in Adverse Outcome Pathways are directional




Biologically meaningful information can be generated
by controlling direction of data-derived associations

Assumption  Positive Activity in Assay (key event) =) Toxicity

Mitochondrial impairment mms) Toxicity Biologically meaningful
Example

Not cytotoxic mmm)  Toxicity Biologically irrelevant

a Assay; + chemical property\ L S
Direction of in vitro-in vivo

association is essential for
N W, interpretability!

Assay, + chemical property | ™= Toxicity




Two rule-based workflows are proposed to
mine associations with constraints

* 1- Rule models on continuous data inputs via modification
of conventional rule models

* 2- Rules models on binary/categorical variables using
controlled emerging patterns



Approach 1: Rule Pruning is applied to satisfy
directional association

Modified rule

KE
Bioactivity l KE
—) Accepted

Conventional rule*
80% accuracy

B ke? Physchem

_ . Pruning
KE ?
Bioactivity - Scenario A

—>

Physchem Modified rule
: . X KE
85% accuracy Bioactivity XKE
Physchem 40% accuracy —> Rejected
KE Key Event
Active inan assay
5 Inactive in an assay
Physicochemical Scenario B
property * Underlying algorithm is C5.0




Approach 2: Controlled Emerging Patterns using
binary features

Hypothetical dataset containing the pattern {a,c}

These represent frequent itemsets that emerging in D1.

are more common in one class in data entry properties
comparison to the other (discriminating D, ; a lz; ¢
a Cc
itemsets) 3 a ¢
The pattern can be composed of one or 4 a b
. . . . S b c
more discriminating features D, . . .
JOURNAL OF n 7
CHEMICAL INFORMATION 3 b ‘
AND MODELING pubs.acs.org/jcim
Terms of Use CC-BY 9 c

—
S
_

Emerging Pattern Mining To Aid Toxicological Knowledge Discovery

Richard Sherhod,T’|| Philip N. ]udson,;t Thierry Hanser,® Jonathan D. Vessey,§ Samuel J. Webb,*
and Valerie J. Gillet*"
J. Chem. Inf. Model. 2014, 54, 1864-1879
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Example (1)

prioritizing hepatotoxic in vitro endpoints
(modified rules on continuous features)



Hepatotoxicity involves complex pathological
pathways which are difficult to capture

Parent drug

,»!"H:V

DIRECT CELL STRESS

In vitro models for hepatotoxicity
have high specificity but low
sensitivity

A DIRECT MITOCHONDRIAL INHIBITION SPECIFIC IMMUNE REACTION
-~ (inhibition of [-oxidation / respiratory chain)

* Which bioactivities in lab are predictive of
hepatotoxicity in vivo?

* How chemical properties affect the concordance

between in vitro measurements and in vivo
Curr Med Chem. 2009 Aug; 16(23): 3041-3053. observations? 19
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ToxCast in vitro readouts in AC¢y"
~8000 compounds against over 800 assays

29 calculated physicochemical properties
(Lipophilicity, molecular weight, number of rings, etc.)

ToxRefDB rat liver observations
~900 compounds against 17 liver measurements

Discretized into LEL™ of 15mg/kg/day and 500mg/kg/day

Data integration of multiple sources: ~6million data points of 673 compounds

* Concentration at half maximum activity
** Lowest Effect Level

20



Analysis performed using modified rule workflow

C5.0 rule
[ Modified rule

L u . [V KE
Bioactivity - Pruning Bioactivity v KE

'_> Physchem -

80% accuracy

Physchem

85% accuracy

KE Key Event

. Active in an assay
Inactive in an assay

Physicochemical
property

7 N\

Understanding
Bioactivity-Physchem
interactions

Prioritizing KE in AOP
and Endpoints for In Vitro
Models

21



Average number of conditions per toxic rule in
the original set

Condition type in toxic rules

Toxicity Active in an Inactive in an physicochemical
threshold assay assay

15mg/kg/day 1 3.8 0.9
500mg/kg/day 1 3.6 0.6

Overall per rule, there is one positive bioactivity, four negative bioactivities and one physicochemical
property. The abundance of inactive assay conditions and physicochemical conditions is slightly lower

at toxicity threshold 500mg/kg/day.



Rule modification to improve interpretability

Original rule: Modified rule:
APR_HepG2_MitoMembPot_72h_up > 2.036928 _ o
Tox21_HSE_BLA_agonist_ratio > 2.40309 Prunmg Tox21_p53_BLA_pS5_viability <= 0.02595656
Tox21_p53_BLA_p5_viability <= 0.02595656 ‘ AMW > 192.001
AMW > 192.001 NumAromaticHeterocycles <= 1

NumAromaticHeterocycles <=1

) >> class toxic
>> class toxic



Workflow overview

Rule modification Strongest.basic.pKa <= 6.48

APR_HepG2_NuclearSize_24h_up {Active}

9

Hepatotoxic
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Modifications makes rules simple
and interpretable

This selection retains rules with top
accuracy (above 70%) and high rule
coverage (above 50 and 20 for
500mg/kg/day and 15mg/kg/day,
respectively)

The combination of top accurate
rules, which represents 80% of all
toxic compounds, is prioritized. This
resulted in 34 and 20 rules at
500mg/kg/day and 15mg/kg/day,
respectively

Prioritized rules are clustered
according to similarity in toxic
compound coverage



Bioactivity space for different levels

500 mg/kg/day

Bioactivity class

Associated assay

711

ik

[T

Activity against
Cytochrome P

APR_HepG2_MitoMass_24h_up
ATG_PPARg_TRANS_up

L oT_AR_ARSRC1_0480
NVS_ADME_hCYP2C18
NVS_ADME_hCYP2C19

L nvs_TR_hDAT
NVS_ADME_rCYP3A1
NVS_ADME_rCYP3A2
NVS_MP_hPBR
NVS_NR_hCAR_Antagonist

OT_FXR_FXRSRC1_0480

similar

15 mg/kg/day

Rule cluster/key
mechanism

Associated assay

Immunological activity

APR_HepG2_CellCycleArrest_72h_dn
|_ Tox21_FXR_BLA_antagonist_ratio
BSK_BE3C_uPA_down
BSK_KF3CT_IP10_down
BSK_KF3CT_MMP9_down
BSK_LPS_CD40_down

L Bsk_3c_iL8_down
BSK_LPS_MCP1_down
BSK_SAg_CD40_down
BSK_SAg_SRB_down

Nuclear receptor
activity/ phenotypic
readouts

APR_HepG2_MitoMembPot_72h_up
APR_HepG2_MitoMembPot_1h_dn

I_ Tox21_AR_BLA_Antagonist_ratio
APR_HepG2_NuclearSize_24h_up
APR_HepG2_OxidativeStress_1h_up
APR_HepG2_StressKinase_1h_up
ATG_BRE_CIS_up
ATG_C_EBP_CIS_up

L ATG_HIF1a_cis_up
ATG_CRE_CIS_up
ATG_FoxA2_CIS_up
BSK_SAg_PBMCCytotoxicity_up
Tox21_ERa_LUC_BG1_Agonist
Tox21_GR_BLA_Antagonist_ratio

Tox21_MitochondrialToxicity_viability

L ATG p53_cis_up

Cytochrome P

{ Activity against

BSK_LPS_PGE2_up
NVS_ADME_hCYP2C19
NVS_ADME_rCYP2A1

L oT_AR_ARSRC1_0480
NVS_ADME_rCYP2C12
NVS_ADME_rCYP2C13
NVS_ADME_rCYP2C6

| ATG_VDRE_CIs_up

Immunological
activity/Endocrine

disruption

BSK_3C_ICAM1_down
BSK_4H_MCP1_down
BSK_BE3C_MIG_down

|_ Tox21_ERa_BLA_Agonist_ratio
BSK_hDFCGF_IP10_down

|_ Tox21_MitochondrialToxicity_viability
BSK_SAg_CD40_down
Tox21_AR_BLA_Antagonist_viability

|_ Tox21_PPARd_BLA_antagonist_ratio
Tox21_ERa_BLA_Antagonist_ratio

Nuclear receptor

activity

APR_HepG2_MitoMass_72h_up

|_ APR_HepG2_NuclearSize_24h_up
ATG_LXRb_TRANS_up
NVS_TR_hDAT
OT_ER_ERbERb_0480
Tox21_FXR_BLA_agonist_ratio

of toxic potency is

Three key clusters;
Cytochrome P, immunological
responses and nuclear
receptor activities

Multiple bioactivities were
described in rules

25



Endpoints used commercial setups are captured in rules,
except for endocrine disruption

- . . Inhibition . . )
In vitro Metabolism Viability/phenotypic Cell stress Immune Bile of protein Mltochondrlal Endqc‘rlne
changes response transport . impairment activity
systems synthesis
Apoptosis
Cell cycle arrest Glutathione
- Cell loss depletion
- Cytoskeletal Oxidative
Cyprotex disruption stress
Cyprgtex@ DNA fragmentation Stress Mitochondrial
CellCiphr and damage kinase function
y T;:; m - fl\ response activation
Cot Sewding n ropies = Mitosis marker Reactive
A Nuclear size oxygen
Insphero. Phospholipidosis species
Steatosis
InShero 3D .
) Cytochrome . Glutathione IL-6 . .
Insight™ activity Apoptosis depletion release BSEP Albumin Intra-tissue ATP
Hepregen Metabolites Glutathione MRP2 Albumin, ATP
Hepatopac Clearance levels CMFDA urea MTT
Hepregen
Albumin,
Cytochrome Cytokine urea
_ _ RegeneMed activity Glutathione Y . o ATP
[— ouer et profile fibrinogen,
Transwel Clearance .
4 vess transferrin
— vt Estrogen
Cell cycle arrest Oxidative IL-9, IL- . . and
i Cellular Mitochondrial
Regenemed Modified Cytochrome Cytotoxicity stress 10,CCL2 ) androgen
rules . . . FXR protein membrane
activity Nuclear size Stress and content otential/toxicit receptors
Mitochondrial mass kinase CD40 P Y activity

Sundhar et al. In Vitro Platforms for Evaluating Liver Toxicity. Exp Biol Med. 2014

26




Combined bioactivity readouts in rules

500 mg/kg/day

Bioactivity class

Associated assay

Activity against
Cytochrome P

APR_HepG2_MitoMass_24h_up

ATG_PPARg_TRANS_up
| oT_AR_ARSRC1_0480

NVS_ADME_hCYP2C18
NVS_ADME_hCYP2C19

| Nvs_TR_hDAT
NVS_ADME_rCYP3A1l
NVS_ADME_rCYP3A2
NVS_MP_hPBR
NVS_NR_hCAR_Antagonist

OT_FXR_FXRSRC1_0480

15 mg/kg/day

Immunological
activity/Endocrine
disruption

BSK_3C_ICAM1_down
BSK_4H_MCP1_down
BSK_BE3C_MIG_down

|_ Tox21_ERa_BLA_Agonist_ratio
BSK_hDFCGF_IP10_down

|_ Tox21_MitochondrialToxicity_viability
BSK_SAg_CD40_down

Tox21_AR_BLA_Antagonist_viability }
|_Tox21 PPARd BLA antagonist ratio

Tox21_ERa_BLA_Antagonist_ratio

At both levels, rules combined the activity
against AR and PPAR. There is bidirectional
crosstalk between the AR and PPAR, by
which each can influence the expression as
well as the transcriptional activity of the
other.

| represent assays co-occurred in one rule

27



Combined bioactivity readouts in rules

Rule cluster/key
mechanism

Associated assay

Activity against
Cytochrome P

BSK_LPS_PGE2_up
NVS_ADME_hCYP2C19
NVS_ADME_rCYP2A1

| oT_AR_ARSRC1_0480
NVS_ADME_rCYP2C12
NVS_ADME_rCYP2C13

T

NVS_ADME_rCYP2C6
| ATG_VDRE_CIS_up

I

BSK_3C_ICAM1_down
BSK_4H_MCP1_down

Immunological [

BSK_BE3C_MIG_down
|_ Tox21 _ERa_BLA_Agonist_ratio

activity/Endocrine
disruption

BSK_hDFCGF_IP10_down

|_ Tox21_MitochondrialToxicity_viability
BSK_SAg_CD40_down
Tox21_AR_BLA_Antagonist_viability

|_ Tox21_PPARd_BLA_antagonist_ratio
Tox21_ERa_BLA_Antagonist_ratio

Nuclear receptor
activity

APR_HepG2_MitoMass_72h_up

|_ APR_HepG2_NuclearSize_24h_up
ATG_LXRb_TRANS_up
NVS_TR_hDAT
OT_ER_ERbERb_0480

Tox21 FXR_BLA_agonist_ratio

At 15mg/kg/day, multiple assay
combinations predictive for hepatotoxicity
can be seen including CYP2C6 with VDR and
CXCL-9 with ER agonists

In response to xenobiotics, VDR directly
induces the upregulation of CYP2C6. Hence,
compounds that combine activity against
CYP2C6 and upregulation of VDR are likely to
cause hepatotoxicity

Studies have shown links between ER
agonists and CXCL9, at which estrogen-
treated mice have shown a significant
reduction in the expression of CXCL9, a
cytokine associated with liver fibrosis

| represent assays co-occurred in one rule



Physicochemical Properties Improve Translatability Of In Vitro
Measurements Into /n Vivo Outcomes

Influence on rule accuracy

Frequent properties are linked to
bioavailability according to literature,
hence can be used as proxy for
exposure/C,,.x

—

(&)}

1
EEEE Ny

— Dose level
| ‘ $ 15mg/kg/day
E3 500mglkg/day

% Change in error rate from removing
physicochemical properties
=

5- . ! Most frequent
. 299% Number of rings
| | at 500mg/kg/day
0- — . ! 359, Number of rotatable bonds

Cytochlrome P CytokineI/Immune Nuclearlreceptor Phenl)typic Otrl1er at 15 mg/kg/day

29
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nermeability

Molecular Properties That Influence the Oral Bioavailability of Drug
Candidates

Daniel F. Veber,* 't Stephen R. Johnson,*$ Hung-Yuan Cheng," Brian R. Smith,* Keith W. Ward,* and

Kenneth D. Kopplet#

Departments of Medicinal Chemistry, Cheminformatics, Computational Analytical and Structural Sciences, and

Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, 709 Swedeland Road, P. O. Box 1539,
King of Prussia, Pennsylvania 19406-0939

Received January 9, 2002

Oral bioavailability measurements in rats for over 1100 drug candidates studied at SmithKline
Beecham Pharmaceuticals (now GlaxoSmithKline) have allowed us to analyze the relative
importance of molecular properties considered to influence that drug property. Reduced
molecular flexibility, as measured by the number of rotatable bonds, and low polar surface
area or total hydrogen bond count (sum of donors and acceptors) are found to be important
predictors of good oral bioavailability, independent of molecular weight. That on average both
the number of rotatable bonds and polar surface area or hydrogen bond count tend to increase
with molecular weight may in part explain the success of the molecular weight parameter in
predicting oral bioavailability. The commonly applied molecular weight cutoff at 500 does not
itself significantly separate compounds with poor oral bicavailability from those with acceptable
values in this extensive data set. Our observations suggest that compounds which meet only
the two criteria of (1) 10 or fewer rotatable bonds and (2) polar surface area equal to or less
than 140 A2 (or 12 or fewer H-bond donors and acceptors) will have a high probability of good
oral bioavailability in the rat. Data sets for the artificial membrane permeation rate and for
clearance in the rat were also examined. Reduced polar surface area correlates better with
increased permeation rate than does lipophilicity (C log P), and increased rotatable bond count
has a negative effect on the permeation rate. A threshold permeation rate is a prerequisite of
oral bioavailability. The rotatable bond count does not correlate with the data examined here
for the in vivo clearance rate in the rat.

’ o)

Number of rotatable bonds is associated with

Cl
O
15mg/kg/day
: : "y Error
Physicochemical condition rate% Frequency %
NumRotatableBonds <=6~ 7.8 +3.2 35
NumHBD <=0 92+37 10
NumAliphaticRings <=2 27+03 10
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Number of rings is associated with plasma
protein binding

100

80

75

Serum Albumin binding (%)

70

65

60

500mg/kg/day
Physicochemical condition  Error rate % Ij/;’equency
NumRings <=3 5.7£3.6 29
NumHeavyAtoms <= 33 3.9+0.5 11
NumAromaticCarbocycles 115419 9

>0

Number of aromatic rings

> o Y .
<
= > il
»
0 1 2 3 4 5 6
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Number of matched rules

0O 2 4 6 8 10 12 14

L | | | | | | J

oXic compounds matc

rules than non-toxic co

15mg/kg/day

L

N SIgn

mpoL

oxic compounds

Om
Zz -
e}
>

Xic compounds

|

| MMMM

Number of matched rules

|

0 5 10 15 20 25 30

nds

ificantly more

500mg/kg/day
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Can Animal models capture effects in human?

Drug Discovery Today

Volume 22, Issue 1, January 2017, Pages 127-132

Review
Are animal models predictive for humans? [
Nlall Shanksl, Ray Greek*2 and ]ean Greek2 Predicting toxicities in humans by nonclinical safety testing: an

update with particular reference to anticancer compounds

Varun Ahuja & =, Sanjay Bokan, Sharad Sharma
Journal of Biomedical Informatics 54 (2015) 167-173

Contents lists available at ScienceDirect
ATLA 43, 393-403, 2015 393

Journal of Biomedical Informatics

Predicting Human Drug Toxicity and Safety via Animal
Tests: Can Any One Species Predict Drug Toxicity in Any
Other, and Do Monkeys Help?

journal homepage: www.elsevier.com/locate/yjbin

Prediction of clinical risks by analysis of preclinical and clinical adverse @Cmsmﬂ(
events

ilev.! Mi 1 i 2
Matthew Clark Jarrod Bailey,! Michelle Thew! and Michael Balls

Elsevier Life Science Solutions, 1600 John F. Kennedy Blvd, Suite 1800, Philadelphia, PA 19103, United States 1Cruelty Free International, London, UK, 2C/0 Fund fOf the Replacement Of An"mals in Medical Experiments

(FRAME), Nottingham, UK

Key factor : animal testing studies do not extrapolate well to human!

33



Number of matched rules

Data from animal testing can be used to infer
molecular mechanisms of adverse effects in human

Troglitazone was withdrawn in 2000 due to
hepatotoxicity

Troglitazone is labelled as toxic at
500mg/kg/day, but not at 15mg/kg/day

15mg/kg/day 500mg/kg/day
- o
R 2 & 8
o _| H = — 9
-— 1 = o !
o S !
© 2 |
o S w |
. T v
© ° £ g
w O
<+ — [e) o S R -
o @ g
N e 2 - 9%
i ) — S — 2 —————
o
T I e T I
Non-toxic Toxic Non-toxic Toxic

According to rules, troglitazone has more liabilities than
75% of toxic compounds at 500mg/kg/day and equal to
average at 15mg/kg/day

Inferred
Associations

OH
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Example (2)

Understanding Polypharmacology in Acute Toxicity
(controlled emerging patterns on binary features )



Possible mechanisms are complex and diverse

Hamm et al (2017) have suggested multiple routes for the mechanisms for acute toxicity as a result of
the acute toxicity workshop in Maryland, USA in 2015

Selected mechanisms of acute toxicity.'

MIE or upstream key event Example stressor Relevant AOP
GABA receptor inhibition Fipronil Binding to the picrotoxin site of ionotropic GABA receptors
leading to epileptic seizures®

Sodium channel inhibition Pyrethroids Axonal sodium channel modulation leading to acute mortality®

Protein synthesis inhibition Ricin

Sodium-potassium ATPase inhibition Digoxin

Mitochondrial inhibition 2-Buten-1-ol,
1-thenyl-4,4,4-trifluoro-3-trifluoromethyl-

Binding of benzodiazepine sites on GABA receptor Tetrazepam

Acetylcholinesterase inhibition 4-(Methylamino)-3,5-xylyl Acetylcholinesterase inhibition leading to acute mortality©
methylcarbamate

GSH depletion followed by covalent binding of reactive Acetaminophen

metabolite to cellular proteins

Michael acceptor reaction Acrolein

Voltage-gated sodium channel inhibition Sodium valproate

NMDA receptor antagonism Methadone

Anticoagulation Coumadin

Dopaminergic D2 receptor antagonism Thioridazine hydrochloride

! This table provides an outline of the some of the known mechanisms involved in acute systemic toxicity along with prototypical initiators. In some cases, the exact molecular initiating
event (MIE) isn't known. Examples of adverse outcome pathways (AOPs) under development in the OECD AOP Wiki are noted and can be found on the web: a) https://aopwiki.org/wiki/
index.php/Aop:10 b) https://aopwiki.org/wiki/index.php/Aop:96; c¢) https://aopwiki.org/wiki/index.php/Aop:16.
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By mining the multi-conditional associations between
potential MIEs and KEs against toxicity outcomes, we can
generate hypothesis about significant polypharmacology

LI : |
CI)— G- —)
r[ — j/

Molecular Cellular Tissue Organ Individual .



Data
b Pub@hem

H Toxicity data:

* Globally Harmonized System: acute oral toxicity PubChem class 1,2 and 3 are considered toxic, whereas
classes 4 and 5 are non toxic

O Bioactivity data:
* i) Tox21 %activity (~9000 compounds of ~900,000 data experimental data points)

* binned into > 20, >40 >60, >80) ~ 4million data points T
* ii) PIDGIN (in-house tool for target prediction) annotated targets ~ 1800 for OXZ ]
d Substructures

* i) ToxAlerts using OCHEM server ~2300
* ii) Frequent substructure using MoSS in KNIME ~ 450

* Data integration: ~7,5millian data points of ~2000 unigue compounds almost balanced toxicity label
38



Rule pattern generation

Binary matrix representation Transaction lists representation
Entry A B (o D E F Label Entry  Featureset Label
1 0 1 1 0 1 1 0 1 B,GE,F 0
2 1 0 1 1 0 0 0 2 ACD 0
3 0 1 1 0 1 0 0 3 B,GCE 0
—
4 1 0 0 0 0 1 1 4 AF 1
5 1 0 1 1 0 1 1 5 ACDF 1
6 1 1 0 1 0 1 1 6 A,B,DF 1

CPAR (Classification based on Predictive Association Rules)

Gain = |P*| (lo 1P| — lo 1P )
S1P I+ INl — BIPI + IN|

[decay factor of 2/3, similarity ratio of 1 : 0.99, minimum gain 2.5]

—

Rules

A, F >> toxic
A,D, F >> toxic



Workflow for controlled emerging patterns

D t Bioactivity substructure
2% dentify the model
Bioactivity/substructure ldenti Y the mode Toxic rules + +
Versus toxicity labels E—) design matrix ——
on toxi
(Tox21,toxalerts, GHS labels (applying monotonicity constraints rules - *
for acute toxicity to improve interpretability)
Generate emerging Analysis
E——) patterns
for toxic and non toxic compounds
Transaction lists representation 1. Synergy
Entry  Featureset Label Minin g Synergy
{Bioactivity A + substructure S} >> Acute toxicity 1 B,GE,F 0 interactions between
{Bioactivity C + bioactivity E} >> Acute toxicity 2 ACD 0 f
{Substructure D + substructure J} >> Acute toxicity 3 BCE 0 eatures
" 2. Networks
4 AF 1 .
Clusters, adjacency
5 A,CDF 1
6 A,B,DF 1
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Thousands of rules were generated with an
average accuracy (confidence) above 80%

Single Multiple Compound N# of
N# of all .. . .
condition condition Accuracy**  coverage conditions
rules®
rules rules per rule per rule?
9165 1267 7898
' 85+0. 26.3+12.8 2.6 10,
Toxic rules (7381) (566) (6815) 0.85 = 0.083 6.3 8 6 £0.83
Non-toxic 4613 410 4203
.82 +£0.082 34.1 £ 20. 3+,
rules (3866) (155) (3711) 08 0.082°3 08 3.3 3

* Number of unique rules between parentheses
** Values represent mean and standard deviation
¢ Number of conditions in rules excluding single condition rules

Unique single condition rules represent less than 10% of all unique rules



Frequent single condition rules

Features Chemical Structure NMI
Cytotoxicity and toxicophores showed
Cytotoxicity (>60%) - -2.04 . . . .
the strongest univariate associations
Sulfenic acid derivatives e N -1.66
Organophosphorothionate ‘. o
esters, Thiophosphoric acid 0T \ ~ o -~ -1.76
esters o \
—— (o] —
ci
2 |
Vinyl chlorides -2.02 ) ‘ | \
S
n \ —— B = T U R P -
o 1
~— _3- L
Haloethyl amines (N- / 8) ?
ety s s | s
. \ 5 0
- [ d
e 41 0
-
Allylic halides and alkoxides >:\- H / -2.07 O : .
< °
ci o = 9 i
) ci 2 -5 s 3
B-Haloamines N /\/ -2.22 §
o o ¢ ¢ ¢
| | ¢
. / N‘ N‘ \
Dinitroarenes o~ @ AN -2.35 ®
SR SN S
@) S 3§
C?Q \\'b(\ OQ’Q O%\
: ° o @
Monohalogen substituted 250 N Q)’b‘
ketones ci oc}
Q

o
Nitroso compounds ~ = -2.50 42




Synergy analysis to understand polypharmacology

1) Synergy using mutual informtion

For c={a,b} pair in Rule i against toxicity label Z 0 g
Synergy = Ml(Ci,Z) - [Ml(auz) + Ml(buz)] < -

* Improvement = Ml(c;,Z) — max[Ml(a;,,Z) , Mi(b,,Z)] S :
L(E ™ I
> i
* 2) Synergy Factor from odd ratios (equivalent to ;C% ~ T
interaction weight in regression equation) -4 | |
_6_
o — O

* Synergy Factor = OR;, / (OR; X OR,) MI synergy No MI synergy
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Synergy Factor

8 10 12 14

6

Synergistic pairs are dissimilar in their
chemical profiles and biological function

ce) o —
g o g -
© ©
(T (1
> >
o 2
o ¥ o Y
c c
> >
n n
AN AN — O
XS
o
I o 8507860 60°v ©f]
[ [ [ [ [ ! ! !
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
Similarity in KEGG pathways Similarity in GO molecular functions

Similarity in compound profiles
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Known key events in acute toxicity show synergy
with disruption of TR, VDR and AhR

Key Event Frequently Odd Synergy N# toxic Interpretation from literature
associated Key Ratio factor compou
Events comb nds
Androgen Six-member ring 6.5 3.8 37 Heterocycles steroids have enhanced
antagonism heterocycles 2.9 1.5 47 activity and can produce neurotoxicity
Estrogen and convulsions
antagonism
Glutamate receptor TR antagonism 3.7 2.2 46 Thyroid hormone activates glutamic
Cell viability 3.9 2.0 37 neuronal reuptake. Mitochondrial toxicity
Disruption of 2.4 1.5 68 potential toxicity of glutamate disruptors.
mitomembrane
potential
GABA receptor ARE agonist 21.7 6.8 21 TR and ROS control GABA reuptake.
TR antagonism 22.8 5.4 21 Vitamin D3 via VDR regulate GABA
Disruption of 23.8 6.1 22 expression.
mitomembrane 5.8 2.5 23
potential 2.4 1.4 62
HIF2

VDR



Known key events in acute toxicity show synergy
with disruption of TR, VDR and AhR

Cyp2C19 CAR antagonism 1.4 1.0 327 CAR, VDR and AhR regulate the
VDR antagonism 1.5 1.1 308 expression of Cytochrome P enzymes.
AhR activation 1.5 0.9 326

AChE Derivatives of 17.4 4.9 17 Depletion of PIP2 mediated the inhibition
carbamates of ACh K* ion channels via PI5P4K
Phophstidyl inositol 6.4 2.6 37 inhibition.
5 phosphate kinase 18 1.2 164 Cholinergic toxidrome involve Ca ion
VDR antagonism 18 11 141 dysregulation and inflammation.
AhR activation 16 10 243 Interference with calcium sensitization of
Troponin T cardiac 17 10 233 troponin and inflammatory responses of
NLRP3 NLRP3 are associated with cardiovascular

effects.

Nitric Oxide Retinal 2.1 1.3 99 VDR and retinal dehydrogenase activities

Synthase (NOS) dehydrogenase 2.0 1.2 160 can induce NOS expression.
VDR 3.2 1.2 61

Alkyl halides




Analysis of rule networks can reveal interesting

patterns

Rule input | > Network output
Entry  Featureset Label Entry A B C D E F Label A B (o D E F
1 B,CEF 0 1 0 1 1 0 1 1 0 A - 1 1 2 0 3
2 ACD 0 2 1 0 1 1 0 0 0 B 1 - 0 1 0 1
3 B,GE 0 - 3 0 1 1 0 1 0 0 ' c 1 0 - 1 0 1 —
4 AF 1 4 1 0 0 0 0 1 1 b 2 1 1 0 2
5 ACDF 1 5 1 0o 1 1 o 1 1 E o0 o0 o0 o0 - O
6 A,B,DF 1 6 1 1 0 1 0 1 1 J 3 1 1 2 0
List representation Binary representation Adjacency representation

47

of toxic class Rule network
Nodes are features and edges
are adjacency in rules



Rule networks show mechanisms-based clustering

Substructure/Toxicophore
Cell viability

Enzyme

Kinase

GPCR

lon Channel

Nuclear Receptor

Other target type

Cell viability

" E e EnN

_—

Community clustering
Synergistic link

Not synergistic

Target-specific

Cluster 3
Clusters 412 30, MR

Specific and non-specific pathway perturbations form independent clusters.
Therefore, analysis of key events acute toxicity should consider both



Known key events in acute toxicity were central in rule

networks

Structural alerts

Bioactivity features

Top degree Top NMI1 Top degree Top NMI
- six membered heterocyclic - oxygen- linked to - TR (antagonist) - ARE (agonist)
compounds aliphatic carbon - NFE2 - CAR (antagonist)
- C=0 chain (variable - CAR (antagonist) ER (antagonist)
- C=N length) - (Glutamate receptor (ion AR (antagonist)
- halogen derivatives - nitrogen linked to channel) 11 viability
Custer 1 nitrile satqrated garbon - | Disruptors of mitoghondrial
- saturated heterocycles chain (variable \Umemberane potential
- nitrogen linked to saturated length) - SIR2
carbon chain - | Cell viability ]
- a,B-unsaturated bond linked to \
oxygen atom (Michael rection
acceptor)
- Halogens - Halogenated alkyls - AhR - DAO
- Aromatic amines and allyls - Troponin T cardiac - Neuronal Ach
- N - Nand S mustard - VDR( antagonists) - Tyrosine kinase
Custer2 ~ = Amines - 0 - NOS TYRO3
- Oxygen group (O,S,SE) - _AMPK - AChE
- - Serine threonine
- MAP kinase kinase protein kinase
- NOS
- Pnictogen (N group) - Thiophsophoric acid - Ephrine type A receptor - Cyclic
- Carboxylic acid derivatives derivatives - Ca calmodulin protein kinase phosphodiesterase
- Tertiary amine - P - Cyclic phosphodiesterase - Carboxic acid ester
Custer 3 - PorS - N-substituted - AhR (activator) hydrolase
- Derivatives of urethane anilines - AChE
(carbamates) - Pnictogens (N- - PIPK
group)

Benzyl amine

NMI: normalized mutual information

<

. \ 1 <& ol g
af g,
) ‘)f‘ .
S g'- f. Substructure/Toxicophore
Cluster 1 e 3 ‘;“ % ° Cell viability
> ¢ ~;- Enzyme
e 3 \’ NS = Kinase
U e = GPCR
A \ lon Channel
¥ = Nuclear Receptor
Other target type
Cluster 2 «

. Cluster 3
Clusters 4-12 2 v

Nuclear receptor
Disruption on their own
may not explain how
acute toxicity was
triggered. Because they
are related to chronic
effects.
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Exploring polypharmacology is important especially
at low potencies

O 0

60

: Conventional activity
| @ cutoff
|
|

Degree connectivity
40

=
s
%O@

I I I l
20% 40% 60% 80%

Potency in Tox21 assays

Degree connectivity is associated with how frequent the feature is used in the rules. There is an inverse

relationship between potency in Tox21 assay and connectivity in the network -



Visualizing compou
navigate polyp
Toxic compounds

Overactivation of
cytotoxicity cluster

O OH 0 . g
'OH N o TN
O‘O‘ N il

O O OH O\O NH,
o_ .
-~ OH

™

nd-specific rule r

etworks help to

armacology and assess risk
Non- toxic compounds

Weak activation of
network clusters
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Toxic compounds

Non- toxic compounds

L
-

Higher density of synergistic links

(synergy density greater than 15% Cl
has 3.5 higher odds to observe N
acute toxicity) | Py Promiscuous compounds of relatively lower density of
Cl” "N” ~Cl

synergistic links (compared to toxic compounds of similar
substructures)



Conclusions

Hepatotoxicity cannot very well be captured by single assay endpoints, but
better by a combination of bioactivities in relevant assays, with the

likelihood of hepatotoxicity increasing with assay promiscuity

In vitro-in vivo associations improved bg incorporatin% physicochemical
properties, such as number of rotatable bonds, especially for the potent
toxicity levels

In order to capture acute toxicity using in vitro methods, polypharmacology
should be considered, especially at weak potencies which can be overlooked

using conventional safety margin methods

Synergistic ponTpharmacoIogP/ is common between known key events and
the disruption of relevant nuclear receptors (TR, VDR and AhR)

Understanding significant polypharmacology can be used to guide cost and
time effective iterative screening protocols for toxicity assessment



Acknowledgments

University of Liverpool
University of Cambridge Dr Frans Coenen

Dr Andreas Bender

Dr Fredrik Svensson OCHEM platform

Kathryn Giblin Dr. Igor V. Tetko

Dr Dezso Modos

. Lhasa Itd
Ines Smit Dr Lilia Fisk
Dr Avid Afzal Dr Jonathan Vessey

Azedine Zoufir
EPA National Centre for Computational Toxicology

Dr Russell Thomas

Dr Natalia Aniceto

Dr Lewis Mervin

Islamic Development Bank
Cambridge Trust Fund



Thank you




